Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Hydrogen bonding and $\pi-\pi$ stacking in hexaaquairon(II) bis(4',7-dimethoxy-isoflavone- 3^{\prime}-sulfonate) octahydrate

Zun-Ting Zhang* and Xin-Li Cheng

School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China
Correspondence e-mail: zhangzt@snnu.edu.cn

Received 30 September 2005
Accepted 4 November 2005
Online 19 November 2005
In the structure of the title compound, $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{17} \mathrm{H}_{13^{-}}\right.$ $\left.\mathrm{O}_{7} \mathrm{~S}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}, 16$ hydrogen bonds exist between the centrosymmetric $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation, the isoflavone- 3^{\prime}-sulfonate anions and the coordinated and solvent water molecules. $\pi-\pi$ stacking interactions between the isoflavone units, hydrogen bonding and electrostatic interactions result in a threedimensional supramolecular structure.

Comment

Dimethoxydaidzein (4',7-dimethoxyisoflavone) is found mainly in Leguminosae plants, such as Wisteria brachybotrys (Konoshima et al., 1988), the root of Glycyrrhiza pallidiflora Maxim (Fukai et al., 1990) and the fruits of Amorpha fruticosa (Petkov et al., 1983). It has been shown to be pharmacologically active as an inhibitor of phosphodiesterase (Petkov et al.,
1983) and of the Epstein-Barr virus (Konoshima et al., 1988). Oka et al. (1989) also found that dimethoxydaidzein can be used to inhibit cancer cells. The biological utilization rate of isoflavonid is low and the dose is high because of its poor solubility. Thus, it is necessary to synthesize a water-soluble derivative of dimethoxydaidzein in order to study its possible biological effects. We have synthesized several derivatives of daidzein, namely sodium 7-methoxy-4'-hydroxyisoflavone-3'sulfonate (Zhang et al., 2002), sodium $4^{\prime}, 7$-dihydroxyisoflav-one- 3^{\prime}-sulfonate (Zhang et al., 2003) and sodium 5,7-dihy-droxy-4',6-dimethoxyisoflavone- 3^{\prime}-sulfonate (Zhang et al., 2004), and have studied their crystal structures and biological activities. The results show that isoflavonesulfonates possess better biological activities than their parent compounds. The title compound, (I), is a water-soluble derivative of isoflavone with potential medical applications.

A molecular representation of the structure of (I) is shown in Fig. 1. The $\mathrm{Fe}^{\mathrm{II}}$ atom lies on an inversion centre and is coordinated by six water molecules, which form a slightly distorted octahedron. The $\mathrm{Fe}-\mathrm{O}$ bond lengths fall in the range $2.043(3)-2.155(3) \AA$, and are close to those in both $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot-$ $2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ [2.024 (1)-2.164 (2) \AA; Honda et al. (2003) and Zhu et al. (2003), respectively].

In the anion, the bond lengths and angles of the isoflavone units are similar to those in the isomorphic compounds $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] X_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Zhang et al., 2002) and $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ $X_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Wang \& Zhang, 2005) (X is 4',7-dimethoxy-

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Thin dashed lines indicate hydrogen bonds. For clarity, the H atoms of the isoflavone skeletons have been omitted.

Figure 2
A partial packing diagram for (I), viewed appoximately along the a axis. Thin dashed lines indicate hydrogen bonds and $\pi-\pi$ stacking interactions.
isoflavone- 3 '-sulfonate). The atoms of the benzopyranone moiety containing rings $A(\mathrm{C} 4-\mathrm{C} 9)$ and $C(\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{O} 1)$ display an almost coplanar configuration, with a mean deviation from the least-squares planes of 0.010 (3) \AA. To avoid steric conflict, the two rigid ring systems, namely benzene ring $B(\mathrm{C} 10-\mathrm{C} 15)$ and the benzopyranone moiety, are rotated by $58.09(13)^{\circ}$ with respect to each other. Methoxy atoms C17 and O4 bonded to atom C13 are nearly coplanar with the attached ring B, with mean deviations from the least-squares plane of 0.013 (4) and 0.012 (3) \AA, respectively. Atom O3 of the other methoxy group bonded to atom C7 is nearly coplanar with its attached A / C rings, with a mean out-of-plane deviation of 0.012 (2) \AA, while atom C16 of this methoxy group is slightly out of the plane [0.094 (4) \AA].

One hydrogen-bond chain exists between carbonyl atom O 2 and the $\mathrm{Fe}^{\mathrm{II}}$-coordinated water molecule O 8 , bridged by $\mathrm{O} 11-\mathrm{H} 25 \cdots \mathrm{O} 2, \mathrm{O} 11-\mathrm{H} 26 \cdots \mathrm{O} 13, \mathrm{O} 13-\mathrm{H} 29 \cdots \mathrm{O} 14$ and $\mathrm{O} 8-\mathrm{H} 20 \cdots \mathrm{O} 14$ hydrogen bonds (Fig. 1). Water atom O14 and sulfonate atom O6 are bifurcated and trifurcated, respectively, by hydrogen bonds (Table 1).

The isoflavone skeletons are arranged in an antiparallel fashion, with $\pi-\pi$ stacking interactions between rings A in a column along the b axis (Fig. 2.). A normal range for such interactions is 3.3-3.8 \AA (Janiak, 2000). In (I), rings A of the isoflavone skeleton form stacks with $C g \cdots C g^{i}=3.683$ (2) \AA and $C g \cdots C g^{\text {ii }}=3.799$ (2) \AA, where $C g, C g^{\mathrm{i}}$ and $C g^{\mathrm{ii}}$ are the centroids of rings A at $(x, y, z),(1-x,-y, 2-z)$ and $(1-x$, $1-y, 2-z$), respectively. The $\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O} 5^{\text {vi }}$ hydrogen bond [symmetry code: (vi) $-x+1,-y+1,-z+2$] between isoflavone units builds a supramolecular $R_{2}^{2}(28)$ synthon (Etter, 1990). These isoflavone columns are also crosslinked by a $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{v}}$ hydrogen bond [symmetry code: (v) $\left.-x+1, y-\frac{1}{2},-z+\frac{3}{2}\right]$.

Thus, in the crystal structure of (I), the hydrophilic regions are dominated by classical hydrogen bonds, while the columns of isoflavone moieties generate hydrophobic areas, with the sulfonate group bridging the two regions. This combination of hydrogen bonds, $\pi-\pi$ stacking and electrostatic interactions between the cations and anions leads to the formation of a three-dimensional supramolecular structure.

Experimental

Sodium 4',7-dimethoxyisoflavone-3'-sulfonate was synthesized according to the method of Wang \& Zhang (2005) and was dissolved
$(1.0 \mathrm{~g})$ in water $(10 \mathrm{ml})$ and then mixed with a saturated solution $(5 \mathrm{ml})$ of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in water. Crystals of the title compound were obtained after 1 d . On recrystallization from water, single crystals of (I) suitable for X-ray diffraction analysis were obtained by slow evaporation (m.p. 593 K ; decomposition).

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{7} \mathrm{~S}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1030.74$
Monoclinic, $P 2_{{ }^{1}} / c$
$a=18.892$ (7) \AA
$b=7.336$ (3) \AA
$c=18.357$ (7) \AA
$\beta=116.552(5)^{\circ}$
$V=2275.8(15) \AA^{3}$
$Z=2$
$D_{x}=1.504 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2854 reflections
$\theta=2.4-23.6^{\circ}$
$\mu=0.52 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Needle, colourless
$0.46 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.797, T_{\text {max }}=0.922$
11468 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.113$
$S=1.01$
4000 reflections
337 parameters
H atoms treated by a mixture of
\quad independent and constrained
\quad refinement

$$
\begin{aligned}
& 4000 \text { independent reflections } \\
& 2643 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.039 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-22 \rightarrow 19 \\
& k=-8 \rightarrow 8 \\
& l=-16 \rightarrow 21 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0498 P)^{2}\right. \\
& \quad+0.9561 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
$$

metal-organic compounds

structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA1112). Services for accessing these data are described at the back of the journal.

References

Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Fukai, T., Toshio, F., Inami, R. \& Nomura, T. (1990). Heterocycles, 31, 643-650.

Honda, K., Yamawaki, H., Matsukawa, M., Goto, M., Matsunaga, T., Aoki, K., Yoshida, M. \& Fujiwara, S. (2003). Acta Cryst. C59, m319-m321.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Konoshima, T., Okamoto, E., Kozuka, M., Nishino, H. \& Tanabe, M. (1988). J. Nat. Prod. 51, 1266-1270.

Oka, K., Kazuhiko, H. \& Yasuou, S. (1989). Jpn Patent 0196 124, 10-07.
Petkov, E., Uzunov, P. \& Kostova, I. (1983). Planta Med. 47, 237-239.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Wang, Q.-Y. \& Zhang, Z.-T. (2005). Acta Cryst. C61, m215-m217.
Zhang, Z.-T., Guo, Y.-N. \& Liu, Q.-G. (2004). Chin. J. Chem. 22, 971-977.
Zhang, Z.-T., Liu, Q.-G. \& Liu, X.-H. (2002). Acta Chim. Sin. 60, 1846-1853.
Zhang, Z.-T., Yang, B.-L. \& Liu, Q.-G. (2003). Chin. J. Chem. 21, 588-593.
Zhu, H.-L., Xia, D.-S., Zeng, Q.-F., Wang, Z.-G. \& Wang, D.-Q. (2003). Acta Cryst. E59, m1020-m1021.

